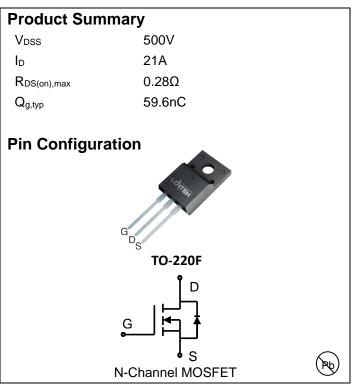


Lonten N-channel 500V, 21A Power MOSFET

Description


The Power MOSFET is fabricated using the advanced planar **VDMOS** technology. The resulting device has low conduction resistance, superior switching performance and high avalanche energy.

Features

- Low RDS(on)
- Low gate charge (typ. Q_g =59.6nC)
- 100% UIS tested
- RoHS compliant

Applications

- Power factor correction.
- Switched mode power supplies.
- LED driver.

Absolute Maximum Ratings

Parameter		Symbol	Value	Unit V	
Drain-Source Voltage		V _{DSS}	500		
Continuous drain current 1)	(T _c = 25°C)	I _D	21	А	
	$(T_{c} = 100^{\circ}C)$		13.5	А	
Pulsed drain current ²⁾		I _{DM}	84	А	
Gate-Source voltage		V _{GSS}	±30	V	
Avalanche energy, single pulse 3)		E _{AS}	810	mJ	
Power Dissipation		P _D	38	W	
Operating and Storage Temperature Range		T _J , T _{STG}	-55 to +150	°C	
Continuous diode forward current		Is	21	А	
Diode pulse current		I _{S,pulse}	84	А	

Thermal Characteristics

Parameter	Symbol	Value	Unit	
Thermal Resistance, Junction-to-Case	R _{ejc}	3.3	°C/W	
Thermal Resistance, Junction-to-Ambient 4)	R _{0JA}	62	°C/W	
Soldering temperature, wave soldering only allowed	т	260	°C	
at leads. (1.6mm from case for 10s)	I sold	260		

LND18N50

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Tube	
LND18N50	TO-220F	LND18N50	50	

Electrical Characteristics T_c = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V_{GS} =0V, I_{D} =0.25mA	500	-	-	V
Gate threshold voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=0.25$ mA	2.0	-	4.0	V
Drain cut-off current	I _{DSS}	V_{DS} =500V, V_{GS} =0 V, T_j = 25°C	-	-	1	μA
Gate leakage current, Forward	I _{GSSF}	V_{GS} =30V, V_{DS} =0V	-	-	100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-30V, V _{DS} =0V	-	-	-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =9A				
		$T_j = 25^{\circ}C$	-	0.24	0.28	Ω
		T _j = 150°C	-	0.6		
Dynamic characteristics						
Input capacitance	C _{iss}		-	3115	-	pF
Output capacitance	C _{oss}	$V_{DS} = 25V, V_{GS} = 0 V,$ f = 250kHz	-	284.4	-	
Reverse transfer capacitance	C _{rss}		-	15.8	-	
Turn-on delay time	t _{d(on)}		-	33.6	-	ns
Rise time	tr	$V_{DD} = 250V, I_D = 18A$	-	65.3	-	
Turn-off delay time	$t_{d(off)}$	$R_G = 10\Omega$, $V_{GS} = 10V$	-	67.3	-	
Fall time	t _f		-	12.4	-	
Gate charge characteristics					· · ·	
Gate to source charge	Q _{gs}		-	13	-	nC
Gate to drain charge	Q _{gd}	V _{DD} = 400V, I _D =18A	-	19.8	-	
Gate charge total	Qg	V _{GS} =0 to 10V	-	59.6	-	
Gate plateau voltage	V _{plateau}		-	4.5	-	V
Reverse diode characteristics						
Diode forward voltage	V _{SD}	V _{GS} = 0V, I _F = 18A	-	-	1.3	V
Reverse recovery time	t _{rr}	V - 400V L -18A	-	397.5	-	ns
Reverse recovery charge	Q _{rr}	V _R = 400V, I _F =18A, dI _F /dt=100 A/µs	-	5.3	-	μC
Peak reverse recovery current	Irrm		-	20.52	-	А

Notes:

1. Drain current limited by maximum junction temperature, TO-220 equivalent.

2. Repetitive Rating: Pulse width limited by maximum junction temperature.

3. I_{AS}=18A, L=5mH, V_{DD}=60V, Starting T_j=25 $^\circ\,$ C.

4. The value of R_{thJA} is measured by placing the device in a still air box which is one cubic foot.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

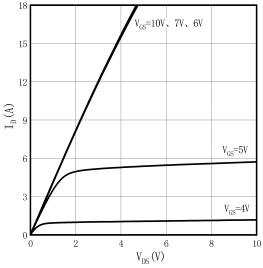


Figure 3. On-Resistance vs. Drain Current

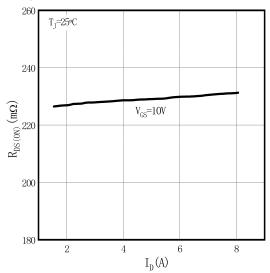


Figure 5.Breakdown Voltage vs.Temperature

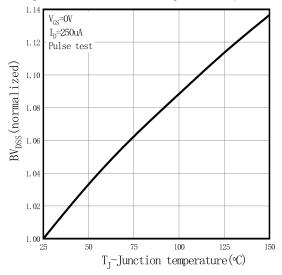


Figure 2. Transfer Characteristics

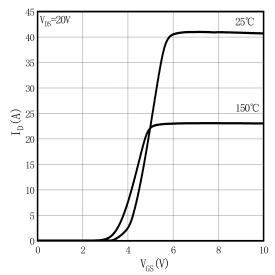


Figure 4.On-Resistance vs.Temperature

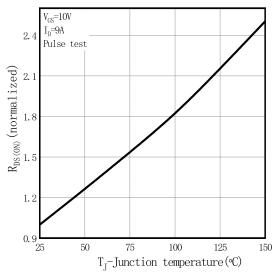


Figure 6.Threshold Voltage vs.Temperature

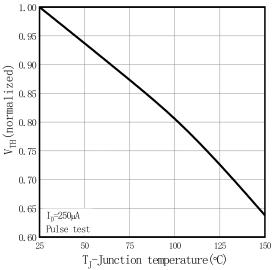


Figure 7.Body-Diode Characteristics

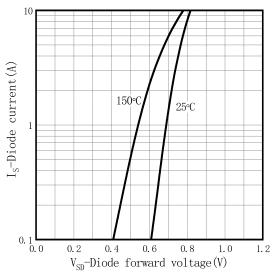
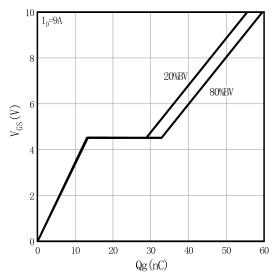
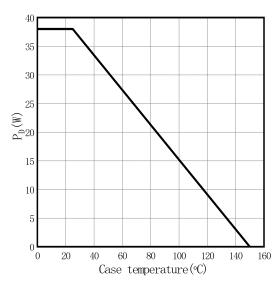
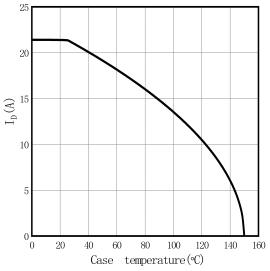
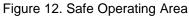


Figure 9.Gate Charge Characteristics


Figure 11. Power Dissipation vs. Temperature



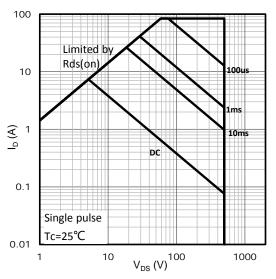
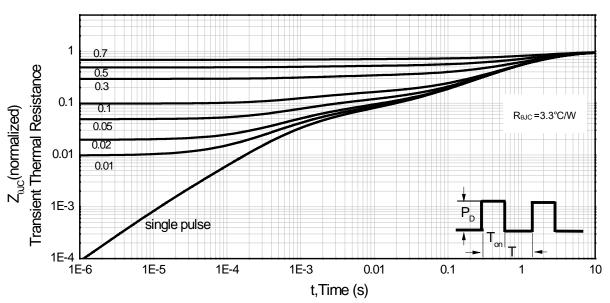
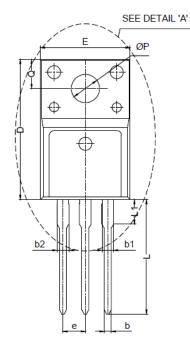
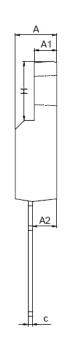
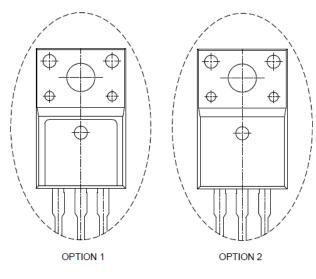

10000 Ciss 1000 Capacitance(pF) 100 Coss 10 Crss f=250kHZ, V_{GS}=0V 1 100 200 300 400 500 0 Drain-source voltage $V_{DS}(V)$

Figure 8.Capacitance Characteristics

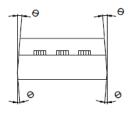

Figure 10.Drain Current Derating



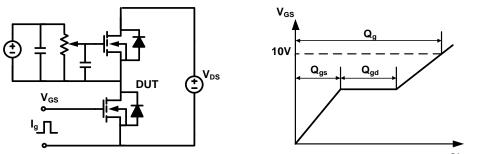




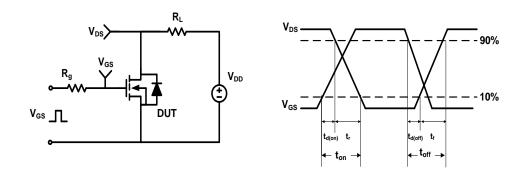
LND18N50


Mechanical Dimensions for TO-220F

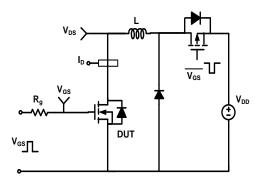
DETAIL 'A'

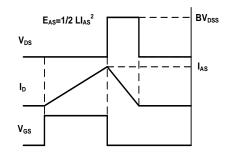


SYMBOLS	MILLIM	ETERS	INCHES		
STMBULS	MIN	MAX	MIN	MAX	
Α	4.40	4.90	0.173	0.193	
A1	2.34	2.74	0.092	0.108	
A2	2.50	2.96	0.098	0.117	
b	0.70	1.00	0.028	0.039	
b1	1.18	1.43	0.046	0.056	
b2	1.15	1.58	0.045	0.062	
с	0.40	0.70	0.016	0.028	
D	15.57	16.40	0.613	0.646	
E	9.96	10.40	0.392	0.409	
е	2.54	BSC	0.100 BSC		
Н	6.48	7.25	0.255	0.285	
L	12.64	14.20	0.498	0.559	
L1	2.90	3.60	0.114	0.142	
ØP	3.00	3.38	0.118	0.133	
Q	3.10	3.50	0.122	0.138	
θ	1°	5°	1°	5°	

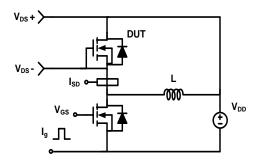

Test Circuit & Waveforms

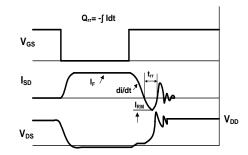
Gate Charge Test Circuit & Waveform




Charge

Resistive Switching Test Circuit & Waveform




Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Diode Recovery Test Circuit & Waveform

Version Information

LND18N50 Revision 1.5

Disclaimer

The content specified herein is for the purpose of introducing LONTEN's products (hereinafter "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

LONTEN does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LONTEN shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although LONTEN endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a LONTEN product.

The content specified herein is subject to change for improvement without notice. When using a LONTEN product, be sure to obtain the latest specifications.